SIKLUS PENGUAPAN TUNGGAL (SINGLE FLASH CYCLE)
SIKLUS PENGUAPAN TUNGGAL (SINGLE FLASH CYCLE)
Fluida reservoir dalam perjalanannya menuju ke permukaan mengalami penurunan temperatur sejalan dengan terbentuknya uap dari fasa liquid yang ada. Asumsi yang dipakai pada kondisi tersebut ialah bahwa proses yang dialami fluida saat mengalir ke permukaan adalah isenthalpik dengan kesetimbangan termodinamika yang tetap terjaga. Hal ini berarti bahwa tidak terjadi kehilangan panas dari sistem ke lingkungan dan penurunan temperatur yang terjadi adalah akibat dipakainya sebagian panas laten yang ada untuk merubah fasa air menjadi fasa uap.
Salah satu hal yang memungkinkan terjadinya proses penguapan tersebut adalah dengan dipasangnya slotted liner pada zona produksi reservoir tersebut. Slotted liner mempunyai lubang-lubang yang memungkinkan throttling process, dimana selama proses tersebut terjadi enthalpi dari sistem dianggap konstan.
Silahkan Download File Full DOCX dan PDF pada link Dibawah Artikel
Siklus Penguapan Tunggal (Gambar 15.4 dan Gambar 15.5) kemudian digunakan untuk memanfaatkan energi panas dari fluida ini karena fluida muncul di permukaan sebagai cairan terkompresi atau fluida jenuh (saturated fluid). Energi yang terkandung dalam fluida tersebut dimanfaatkan dengan mengalirkannya ke dalam suatu alat penguap (flasher) yang beroperasi pada tekanan yang lebih rendah daripada tekanan uap kering yang masuk ke turbin. Secara ideal, energi yang maksimum dapat dihasilkan dari air panas tersebut bila temperatur alat penguap berada di antara temperatur air panas dan temperatur kondenser yang dipakai. Temperatur optimum didapat dari temperatur rata-rata antara temperatur saturasi pada kondisi kepala sumur dan temperatur saturasi pada kondisi outlet turbin (kondenser) .
Pada Gambar 15.4 dan Gambar 15.5 terlihat proses yang dialami fluida reservoir sampai diinjeksikan kembali ke reservoir. Dari reservoir (1) fluida-dalam hal ini saturated liquid-yang diproduksi ke permukaan mengalami penurunan temperatur yang menyebabkan sebagian kecil fasa cair mengalami perubahan fasa menjadi uap. Sebelum memasuki turbin fluida menjalani proses dari titik 1 ke titik 2 yang merupakan proses isentalpik seperti yang telah dijelaskan sebelumnya. Pada titik 2 fluida masuk ke bejana flasher, sehingga : ...(15.17)
Dari persamaan (15.17) didapat fraksi uap yang masuk ke bejana flasher, sedangkan fraksi airnya dibuang.
Uap yang dihasilkan oleh penguapan pada bejana flasher kemudian dialirkan menuju turbin (4), sedangkan fraksi cair yang tersisa diinjeksikan kembali ke dalam sumur injeksi (3) atau mengalami proses flash kembali untuk menghasilkan uap bertekanan rendah untuk dialirkan pada turbin tekanan rendah pada sistem double flash. Hal ini tidak dibicarakan lebih lanjut.
Fraksi uap yang keluar dari bejana flasher inilah yang kemudian menghasilkan listrik dari perubahan entalpi yang terjadi di dalam turbin (antara titik 4 -5). Bila turbin ideal, maka ekspansi uap akan terjadi secara isentropis. Bila temperatur optimum proses flash dapat diketahui maka tekanan flash yang bersesuaian dapat ditentukan.
Pada tekanan dan temperatur inlet turbin diketahui entalpi dan entropi fluida dari tabel uap. Entropi pada titik 4 dan titik 5 (inlet dan outlet turbin) dianggap sama (proses yang terjadi di dalam turbin isentropik), sehingga :
maka fraksi uap yang keluar dari turbin dapat diketahui. Harga fraksi uap ini digunakan untuk menghitung entalpi outlet turbin.
Daya turbin bisa dihitung dengan menggunakan persamaan
X2 merupakan fraksi uap yang dihasilkan oleh flasher yang dialirkan ke turbin, sedangkan sisanya (1 - X2) dibuang. h4 adalah entalpi pada inlet turbin yang sama dengan tekanan penguapan (tekanan flasher) karena diasumsikan fluida tidak mengalami kehilangan tekanan selama perjalanannya menuju turbin, sedangkan h5 adalah entalpi pada tekanan kondenser .